This page demonstrates solving the 2D heat conduction fin problem using a Gmsh-generated mesh. Gmsh is a powerful mesh generation tool that can create complex geometries and meshes for finite element analysis. For the mathematical formulation and theory, see the main (standard) tutorial.
This example demonstrates how to import a Gmsh-generated mesh (.msh file format) and solve a heat conduction problem.
<script type="module"> import { FEAScriptModel, importGmshQuadTri, plotSolution, printVersion } from "https://core.feascript.com/src/index.js"; window.addEventListener("DOMContentLoaded", async () => { // Print FEAScript version in the console printVersion(); // Fetch the mesh file const response = await fetch("./rect_quad_unstruct.msh"); // .msh version 4.1 is currently supported if (!response.ok) { throw new Error(`Failed to load mesh file: ${response.status} ${response.statusText}`); } const meshContent = await response.text(); // Create a File object with the actual content const meshFile = new File([meshContent], "rect_quad_unstruct.msh"); // Create a new FEAScript model const model = new FEAScriptModel(); // Set solver configuration model.setSolverConfig("solidHeatTransferScript"); // Parse the mesh file first const result = await importGmshQuadTri(meshFile); // Define mesh configuration with the parsed result model.setMeshConfig({ parsedMesh: result, meshDimension: "2D", elementOrder: "quadratic", }); // Define boundary conditions using Gmsh physical group tags model.addBoundaryCondition("0", ["constantTemp", 200]); // bottom boundary model.addBoundaryCondition("1", ["constantTemp", 200]); // right boundary model.addBoundaryCondition("2", ["convection", 1, 20]); // top boundary model.addBoundaryCondition("3", ["symmetry"]); // left boundary // Set solver method model.setSolverMethod("lusolve"); // Solve the problem and get the solution const { solutionVector, nodesCoordinates } = model.solve(); // Plot the solution as a 2D contour plot plotSolution( solutionVector, nodesCoordinates, model.solverConfig, model.meshConfig.meshDimension, "contour", "solutionPlot", "unstructured" // Important: specify unstructured mesh type ); }); </script>
Important notes about the Gmsh workflow:
Physical Line("bottom") = {1};
. These are mapped to tags
in the imported mesh.
model.addBoundaryCondition("0", ["constantTemp", 200]); // Gmsh physical group tag 1
.
This conversion is necessary because Gmsh uses 1-based indexing while FEAScript uses 0-based indexing.
You can create your own Gmsh files by writing .geo scripts or using Gmsh's GUI. For this example, we used a simple rectangular domain defined in a .geo file with specific physical groups for each boundary.
Below is the rect.geo file used in this tutorial. It defines a 4m × 2m rectangular domain with physical lines for each boundary edge:
// 2D Rectangle: 4m (width) x 2m (height) // With Physical Lines for boundary labeling // Use the command "gmsh rect.geo -2" to generate the mesh lc = 0.7; // Characteristic length (mesh density) // Points (x, y, z, mesh size) Point(1) = {0, 0, 0, lc}; // Bottom left Point(2) = {4, 0, 0, lc}; // Bottom right Point(3) = {4, 2, 0, lc}; // Top right Point(4) = {0, 2, 0, lc}; // Top left // Lines Line(1) = {1, 2}; // bottom Line(2) = {2, 3}; // right Line(3) = {3, 4}; // top Line(4) = {4, 1}; // left // Line Loop and Surface Line Loop(1) = {1, 2, 3, 4}; Plane Surface(1) = {1}; // Physical Lines Physical Line("bottom") = {1}; Physical Line("right") = {2}; Physical Line("top") = {3}; Physical Line("left") = {4}; // Physical Surface (optional, for FEM domains) Physical Surface("domain") = {1}; // Generate 2D mesh Recombine Surface{1}; // Turn triangle elements into quadrilaterals Mesh.ElementOrder = 2; // Set quadratic elements Mesh 2;
Note how the physical line tags in the geo file correspond to the boundary conditions in our FEAScript code:
Physical Line("bottom") = {1};
→
model.addBoundaryCondition("0", ["constantTemp", 200]);
Physical Line("right") = {2};
→
model.addBoundaryCondition("1", ["constantTemp", 200]);
Physical Line("top") = {3};
→
model.addBoundaryCondition("2", ["convection", 1, 20]);
Physical Line("left") = {4};
→
model.addBoundaryCondition("3", ["symmetry"]);
To generate a mesh file from this .geo script, you would run: gmsh rect.geo -2
in your
terminal, which creates a rect.msh file that can be imported into FEAScript.
Below is a visualization of the quadrilateral mesh generated by Gmsh. Notice how Gmsh creates an unstructured mesh with irregular elements that could potentially adapt to complex domain features.
Quadrilateral mesh (rect_quad_unstruct.msh) generated using the rect.geo script with Gmsh
The mesh consists of quadrilateral elements with varying sizes and shapes. This unstructured mesh approach would be particularly advantageous for complex geometries. FEAScript's Gmsh reader properly handles this unstructured mesh format and maps the elements and boundary conditions.
Below is the 2D contour plot of the computed temperature distribution. This plot is generated in real time using FEAScript. Please note that solutions computed on unstructured meshes like this may exhibit small numerical differences compared to solutions on structured orthogonal meshes. This occurs because derivative calculations in non-orthogonal elements are inherently less precise due to the Jacobian transformation process. These small differences are expected and acceptable for most engineering applications, but may be noticeable in regions with steep temperature gradients.
© 2023- FEAScript